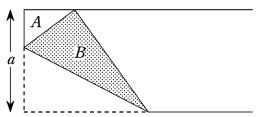
試験時間60分 解答は解答用紙に書いて、提出してください

- $\boxed{1}$ $y=2\cos x+\sin 2x$ の $-\pi \le x \le \pi$ における最小値を求めよ。
- ② 0 < x < 1 で定義された関数 $f(x) = x(\log x)^2$ の最大値を求めよ。ただし、対数は自然対数である。
- ③ 関数 $f(x) = \frac{ax^2 + bx + c}{x^2 + 2}$ (a, b, c は定数) が x = -2 で極小値 $\frac{1}{2}$, x = 1 で極大値 2 をもつ。このとき a, b, c の値を求めよ。
- [4] 関数 $y = \frac{\cos x}{e^x} (x > 0)$ の極大値を、大きい方から順に

$$a_1$$
, a_2 , a_3 , \cdots , a_n , \cdots

とする。このとき、無限級数 $\sum\limits_{n=1}^{\infty}a_{n}$ の和を求めよ。

[5] 細長い長方形の紙があり、短い方の辺の長さが a で長い方が 9a であったとする。右図のよう に、この長方形の1つの角(かど)を反対側の長 い方の辺に接するように折る。図に示した三角 形 A の面積の最大値を求めよ。



- $\boxed{6}$ a を実数とする。このとき、曲線 $y=e^x$ と $y=(x-a)^2$ の両方に接する直線が存在するような a の値の範囲を求めよ。
- 不等式 $\sqrt{x^2+y^2}$ $\ge x+y+a\sqrt{xy}$ が任意の正の実数 x, y に対して成立するような、最大の実数 a の値を求めよ。
- | **8** * 下の表は,あるクラスの生徒 40 人について英語の試験の成績を男女別にして調べた 結果である。クラス全体でのこの試験の平均点は ^ア であり,分散は ^イ であ る。

	人数	平均点	標準偏差
男	24 人	60 点	20
女	16人	70 点	10

- 1 解答 $x=\frac{5}{6}\pi$ のとき 最小値 $-\frac{3\sqrt{3}}{2}$
- [2] 解答 $x = \frac{1}{e^2}$ のとき最大値 $\frac{4}{e^2}$
- [3] 解答 a=1, b=2, c=3
- $\boxed{4} \ \ \, \text{解答} \quad (1) \quad a_n \! = \! \frac{1}{\sqrt{2}} e^{-\frac{8n-1}{4}\pi} \qquad (2) \quad \frac{e^{\frac{\pi}{4}}}{\sqrt{2} \left(e^{2\pi} 1\right)}$
- 5 解答 (1) $\frac{\sqrt{3}}{18}a^2$ (2) $\frac{2\sqrt{3}}{9}a^2$
- [6] 解答 $a \leq \log 4 2$
- 7 解答 $\sqrt{2}-2$
- | 8 | 解答 (ア) 64 (イ) 304

談話室マロニエ 数学小テスト ③5 微分&応用

3 / 8

よって、 yの増減表は次のようになる。

\overline{x}	$-\pi$	•••	$-\frac{\pi}{2}$	•••	$\frac{\pi}{6}$	•••	$\frac{5}{6}\pi$	•••	π
y'		+	0	+	0	_	0	+	
y	-2	1	0	1	$\frac{3\sqrt{3}}{2}$	A	$-\frac{3\sqrt{3}}{2}$	1	-2

したがって, $x = \frac{5}{6}\pi$ のとき最小値 $-\frac{3\sqrt{3}}{2}$ をとる。

2
$$f'(x) = (\log x)^2 + x \cdot 2\log x \cdot \frac{1}{x} = \log x (\log x + 2)$$

$$f'(x) = 0$$
 とすると $\log x = 0$, -2 $0 < x < 1$ であるから $x = \frac{1}{a^2}$

0 < x < 1 における f(x) の増減表は右のようになる。

よって, f(x) は $x = \frac{1}{e^2}$ のとき最大値 $\frac{4}{e^2}$ をとる。

x	0	•••	$\frac{1}{e^2}$	•••	1
f'(x)		+	0	_	
f(x)		1	$\frac{4}{e^2}$	1	

$$\boxed{ \texttt{3} } \ f'(x) = \frac{(2ax+b)(x^2+2) - 2x(ax^2+bx+c)}{(x^2+2)^2} = \frac{-bx^2 + (4a-2c)x + 2b}{(x^2+2)^2}$$

$$f'(-2)=0$$
, $f(-2)=\frac{1}{2}$, $f'(1)=0$, $f(1)=2$ であることが必要。

$$f'(-2) = \frac{-4b - 8a + 4c + 2b}{36} = \frac{-8a - 2b + 4c}{36} = 0$$

$$f'(1) = \frac{-b+4a-2c+2b}{9} = \frac{4a+b-2c}{9} = 0$$

よって
$$4a+b-2c=0$$
 ……①

$$f(-2) = \frac{4a-2b+c}{6} = \frac{1}{2}$$
 to 6 $4a-2b+c=3$ ②

$$f(1) = \frac{a+b+c}{3} = 2 \, h \, \delta$$
 $a+b+c=6$ 3

①, ②, ③ から
$$a=1$$
, $b=2$, $c=3$

逆に,このとき

$$f(x) = \frac{x^2 + 2x + 3}{x^2 + 2}, \quad f'(x) = \frac{-2x^2 - 2x + 4}{(x^2 + 2)^2} = \frac{-2(x + 2)(x - 1)}{(x^2 + 2)^2}$$

f(x) の増減表は次のようになり、条件を満たす。

x	•••	-2	•••	1	•••
f'(x)	_	0	+	0	_
f(x)	N	$\frac{1}{2}$	1	2	A

以上から a=1, b=2, c=3

$$\boxed{4}$$
 (1) $f(x) = \frac{\cos x}{e^x}$ とおくと $f(x) = e^{-x}\cos x$

$$f'(x) = -e^{-x}\cos x - e^{-x}\sin x = -\sqrt{2}e^{-x}\sin\left(x + \frac{\pi}{4}\right)$$

$$f'(x) = 0$$
 のとき $\sin\left(x + \frac{\pi}{4}\right) = 0$ から $x + \frac{\pi}{4} = n\pi$ で $x = \frac{4n-1}{4}\pi$ (n は自然数)

x	0		$\frac{3}{4}\pi$		$\frac{7}{4}\pi$		$\frac{11}{4}\pi$		$\frac{15}{4}\pi$	
f'(x)		l	0	+	0	ı	0	+	0	ı
f(x)		V		1	$\frac{1}{\sqrt{2}e^{\frac{7}{4}\pi}}$	A		1	$\frac{1}{\sqrt{2} e^{\frac{15}{4}\pi}}$	A
		标			粒十	柘	<u>4</u> 1/		梅十	

増減表から
$$a_n = f\left(\frac{8n-1}{4}\pi\right) = \frac{1}{\sqrt{2}e^{\frac{8n-1}{4}\pi}} = \frac{1}{\sqrt{2}}e^{-\frac{8n-1}{4}\pi}$$

(2) $S_n = \sum_{k=1}^n a_k$ とおくと S_n は初項 $\frac{1}{\sqrt{2}} e^{-\frac{7}{4}\pi}$, 公比 $e^{-2\pi}$ の等比数列の和であるから

$$\sum_{n=1}^{\infty} a_n = \frac{\frac{1}{\sqrt{2}} e^{-\frac{7}{4}\pi}}{1 - e^{-2\pi}} = \frac{e^{\frac{\pi}{4}}}{\sqrt{2} (e^{2\pi} - 1)}$$

5 与えられた長方形を CDEF とし、右の図 のように点 P, Q, R をとる。

$$\angle QCD = \angle PDR = 90^{\circ}$$
,

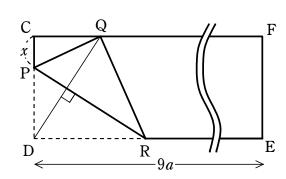
$$\angle CDQ = \angle DRP = 90^{\circ} - \angle QDR$$

よって、 \triangle CQD∞ \triangle DPR であるから

$$CQ : CD = DP : DR$$

ゆえに
$$DR = \frac{CD \cdot DP}{CQ} = \frac{a \cdot (a-x)}{\sqrt{(a-x)^2 - x^2}} = \frac{\sqrt{a}(a-x)}{\sqrt{a-2x}}$$

ここで、xの定義域について考えると、DR = DEのときxの値は最大となる。



このとき DR =
$$9a$$
 であるから $\frac{\sqrt{a}(a-x)}{\sqrt{a-2x}} = 9a$

整理すると $x^2 + 160ax - 80a^2 = 0$

x>0 であるから $x=(36\sqrt{5}-80)a$

よって、xの定義域は $0 < x \le (36\sqrt{5} - 80)a$

(1) 三角形
$$A$$
 の面積を S_A とすると $S_A = \frac{1}{2} \cdot \text{CP} \cdot \text{CQ} = \frac{\sqrt{a}}{2} x \sqrt{a - 2x}$

 $f(x) = x\sqrt{a-2x}$ とおくと

$$f'(x) = \sqrt{a - 2x} + x \cdot \frac{1}{2} (a - 2x)^{-\frac{1}{2}} \cdot (-2) = \frac{a - 3x}{\sqrt{a - 2x}}$$

$$0 < x \le (36\sqrt{5} - 80)a$$
 において $f'(x) = 0$ とすると $x = \frac{a}{3}$

 $0 < x \le (36\sqrt{5} - 80)a$ における f(x) の増減表は次のようになる。

x	0	•••	<u>a</u> 3	•••	$(36\sqrt{5} - 80)a$
f'(x)		+	0	_	
f(x)		1	極大	A	

f(x) が最大のとき S_A は最大となるから、 S_A は

$$x = \frac{a}{3}$$
で最大値 $\frac{\sqrt{a}}{2} \cdot \frac{a}{3} \sqrt{\frac{a}{3}} = \frac{\sqrt{3}}{18} a^2$

をとる。

別解 x>0, a-2x>0 であるから、相加平均・相乗平均の大小関係により

$$\begin{split} S_A &= \frac{\sqrt{a}}{2} \sqrt{x \cdot x \cdot (a - 2x)} \\ &\leq \frac{\sqrt{a}}{2} \sqrt{\left\{ \frac{x + x + (a - 2x)}{3} \right\}^3} = \frac{\sqrt{3}}{18} a^2 \end{split}$$

等号が成り立つのは, x=a-2x すなわち $x=\frac{a}{3}$ のときである。

これは $0 < x \le (36\sqrt{5} - 80)a$ を満たす。

よって、 S_A は $x=\frac{a}{3}$ で最大値 $\frac{\sqrt{3}}{18}a^2$ をとる。

(2) 三角形 Bの面積を S_B とすると、QR = DR であるから

$$S_B = \frac{1}{2} \cdot PQ \cdot QR = \frac{1}{2} (a - x) \cdot \frac{\sqrt{a} (a - x)}{\sqrt{a - 2x}} = \frac{\sqrt{a} (a - x)^2}{2\sqrt{a - 2x}}$$

$$g(x) = \frac{(a-x)^2}{\sqrt{a-2x}}$$
 とおくと

$$\begin{split} g'(x) = & \frac{2(a-x)\cdot(-1)\cdot\sqrt{a-2x} - (a-x)^2\cdot\frac{1}{2}(a-2x)^{-\frac{1}{2}}\cdot(-2)}{a-2x} \\ = & \frac{(a-x)(3x-a)}{(a-2x)^{\frac{3}{2}}} \end{split}$$

 $0 < x \le (36\sqrt{5} - 80)a$ において g'(x) = 0 とすると $x = \frac{a}{3}$

 $0 < x \le (36\sqrt{5} - 80)a$ における g(x) の増減表は次のようになる。

x	0	•••	$\frac{a}{3}$	•••	$(36\sqrt{5} - 80)a$
g'(x)		-	0	+	
g(x)		1	極小	1	

g(x) が最小のとき S_B は最小となるから、 S_B は

$$x = \frac{a}{3}$$
 で最小値 $\frac{\sqrt{a}(\frac{2}{3}a)^2}{2\sqrt{\frac{a}{3}}} = \frac{2\sqrt{3}}{9}a^2$

をとる。

 $\boxed{6} \quad y = e^x \text{ is } \quad y' = e^x$

曲線 $v=e^x$ 上の点 (t, e^t) における接線の方程式は

この直線が曲線 $y=(x-a)^2$ と接する条件は、yを消去した xの方程式

$$(x-a)^2 = e^t x + (1-t)e^t$$

すなわち $x^2-(2a+e^t)x+a^2+(t-1)e^t=0$

が重解をもつことである。

この方程式の判別式を D とすると, 重解をもつ条件は

$$D = (2a + e^t)^2 - 4\{a^2 + (t-1)e^t\} = 0$$

ゆえに $4ae^{t} + e^{2t} - 4(t-1)e^{t} = 0$

 $e^t > 0$ であるから $4a + e^t - 4(t-1) = 0$

変形すると $t-1-\frac{e^t}{4}=a$ ……①

曲線 $y=e^x$ と $y=(x-a)^2$ の両方に接する直線が存在する条件は、tについての方程式①

が少なくとも1つの実数解をもつことである。

$$f(t) = t - 1 - \frac{e^t}{4}$$
 とおくと
$$f'(t) = 1 - \frac{e^t}{4} = \frac{4 - e^t}{4}$$

f'(t) = 0 とすると $t = \log 4$

f(t) の増減表は右のようになる。

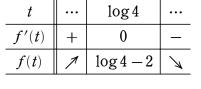
また
$$\lim_{t \to \pm \infty} f(t) = \lim_{t \to \pm \infty} \left(t - 1 - \frac{e^t}{4} \right) = -\infty$$

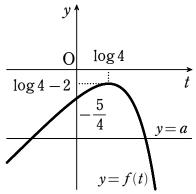
よって、v=f(t) のグラフは右の図のようになる。

このグラフと直線 y=a が共有点をもつとき、方程式 ① $\log 4-2$ は実数解をもつ。

グラフから、求める a の値の範囲は

$$a \le \log 4 - 2$$





[7] y>0から,両辺を yで割ると

$$\sqrt{\left(\frac{x}{y}\right)^2 + 1} \ge \frac{x}{y} + 1 + a\sqrt{\frac{x}{y}}$$

不等式は
$$\sqrt{t^2+1} \ge t+1+a\sqrt{t}$$

この不等式を整理すると

$$\frac{\sqrt{t^2+1}-t-1}{\sqrt{t}} \ge a \quad \cdots \quad \bigcirc$$

よって、t>0 であるすべての実数 t に対して不等式 ① が成り立つような最大の実数 a を求めればよい。

$$f(t) = \frac{\sqrt{t^2+1}-t-1}{\sqrt{t}}$$
 とおくと

$$f(t) = \left(t + \frac{1}{t}\right)^{\frac{1}{2}} - t^{\frac{1}{2}} - t^{-\frac{1}{2}}$$

$$\begin{split} f'(t) &= \frac{1}{2} \Big(t + \frac{1}{t} \Big)^{-\frac{1}{2}} \Big(1 - \frac{1}{t^2} \Big) - \frac{1}{2} t^{-\frac{1}{2}} + \frac{1}{2} t^{-\frac{3}{2}} \\ &= \frac{1}{2} \cdot \sqrt{\frac{t}{t^2 + 1}} \cdot \frac{t^2 - 1}{t^2} - \frac{1}{2\sqrt{t}} + \frac{1}{2t\sqrt{t}} \\ &= \frac{(t - 1) \big\{ (t + 1) - \sqrt{t^2 + 1} \big\}}{2t\sqrt{t(t^2 + 1)}} \end{split}$$

$$\ \ \, \text{if} \ \ \, (t+1)^2 - \big(\sqrt{t^2+1}\,\big)^2 = (t^2+2t+1) - (t^2+1) = 2t > 0 \\$$

$$t+1>0, \ \sqrt{t^2+1}>0 \ \text{\it c}$$
 bash is

$$(t+1)-\sqrt{t^2+1}>0$$

談話室マロニエ 数学小テスト ③5 微分&応用

8 / 8

よって、f'(t)=0 とすると t=1 t>0 における f(t) の増減表は右のようになる。

t	0	•••	1	•••
f'(t)		_	0	+
f(t)		N	$\sqrt{2}-2$	1

ゆえに, f(t) は t=1 で最小値 $\sqrt{2}-2$ をとる。

したがって、 $a \leq \sqrt{2} - 2$ であれば不等式 ① は常に成り

立つから、求める a の値は $a=\sqrt{2}-2$

8 クラス全体の平均は
$$\frac{24\cdot60+16\cdot70}{40}=^{7}64$$
 ……①

一般に、ある変量 x のデータの平均値を x, 分散を s^2 としたとき

$$s^2 = \overline{x^2} - (\overline{x})^2 \quad \cdots \quad 2$$

が成り立つ。ここで、 $\overline{x^2}$ は x^2 のデータ x_1^2 , x_2^2 , ……, x_n^2 の平均値を表す。

男子の点数の2乗の平均値をa,女子の点数の2乗の平均値をbとする。

男子の標準偏差は 20 であるから $20^2 = a - 60^2$

よって
$$a = 60^2 + 20^2$$

女子の標準偏差は 10 であるから $10^2 = b - 70^2$

よって
$$b = 70^2 + 10^2$$

したがって、クラス全体の点数の2乗の平均値は

$$\frac{24a + 16b}{40} = \frac{24(60^2 + 20^2) + 16(70^2 + 10^2)}{40}$$

$$=10\{6(36+4)+4(49+1)\}=4400$$

①,②から、クラス全体の点数の分散は

$$\frac{24a+16b}{40}-64^2=4400-4096$$
$$= ^{3}304$$