第32章 積分の応用Ⅰ(数Ⅲ,3講分)

A問題

32-A-1 F609A

定積分 $\int_0^2 |x-1|e^x dx$ を求めよ.

32-A-2 * F610A

n は自然数とする.定積分 $\int_0^\pi |\sin nx + \sqrt{3}\cos nx| dx$ を求めよ.

32-A-3 F611A

1 < a < e のとき,関数 $f(a) = \int_0^1 |e^x - a| dx$ の最小値を求めよ.

32-A-4 F617A

曲線 $y = \frac{-2x+2}{x+1}$ と x 軸, y 軸で囲まれた図形の面積を求めよ.

32-A-5 F618A

次の図形の面積を求めよ.

- (1) 曲線 $y = e^x$ と直線 x = 1, x 軸, y 軸で囲まれた図形.
- (2) 曲線 $y = e^x$ と直線 $y = e^2$, y 軸で囲まれた図形.

32-A-6 F619A

次の図形の面積を求めよ.

- (1) $0 \le x \le \frac{\pi}{2}$ において、2 曲線 $y = \sqrt{3} \tan x$ 、 $y = 2 \sin x$ で囲まれた図形.
- (2) $0 \le x \le 2\pi$ において、2 曲線 $y = \cos x$ 、 $y = \cos 2x$ で囲まれた図形。

32-A-7 F625A

xy 平面において、原点から曲線 $C: y = e^x$ に引いた接線を l とする.

- (1) lの方程式を求めよ.
- (2) C, $l \ge y$ 軸で囲まれた図形の面積を求めよ.

32-A-8 * F626A

曲線 $C_1: y=ax^2$ と曲線 $C_2: y=\log x$ はただ 1 点を共有し、その点におけるそれぞれの接線が一致しているものとする。

- (1) 定数 a の値と共有点の座標を求めよ.
- (2) C_1 , C_2 と x 軸で囲まれた図形の面積を求めよ.

32-A-9 * F627A

媒介変数 t (0 $\leq t \leq 1$) を用いて,

$$\begin{cases} x = 1 - t^4, \\ y = t - t^3 \end{cases}$$

と表される曲線を C とする.

- (1) Cの概形をかけ.
- (2) $C \ge x$ 軸で囲まれた図形の面積を求めよ.

B問題

32-B-1 F612B

- (1) f(t) を求めよ.
- (2) f(t) の最小値を求めよ.

32-B-2 * F613B

- (1) 自然数 k に対して, $I_k = \int_{(k-1)\pi}^{k\pi} e^{-x} \sin x \, dx$, $J_k = \int_{(k-1)\pi}^{k\pi} e^{-x} \cos x \, dx$ とするとき, $I_k + J_k$, $I_k J_k$ をそれぞれ k を用いて表せ.
- (2) n を自然数とするとき、 $\lim_{n\to\infty}\int_0^{n\pi}e^{-x}|\sin x\,|\,dx$ を求めよ.

32-B-3 * F614B

関数 $f(a) = \int_0^{\frac{\pi}{2}} |\sin x - a\cos x| dx$ の最小値を求めよ.

32-B-4 F620B

次の図形の面積を求めよ.

- (1) 2曲線 $y=\frac{2x}{x^2+1}$, $y=x^2$ で囲まれた図形の面積を求めよ.
- (2) 2曲線 $y^2 = 4x$, $x^2 = 4y$ で囲まれた図形の面積を求めよ.

32-B-5 F621B

2曲線 $y=x^2$, $\sqrt{x}+\sqrt{y}=2$ と y軸で囲まれた図形の面積を求めよ.

32-B-6 * F622B

2曲線 $C_1: y = 2\sqrt{x-1}, C_2: y = \log(x-1) + 2$ がある.

- (1) C_1 , C_2 はただ 1 つの共有点をもつことを示せ.
- (2) C_1 , C_2 とx軸で囲まれた図形の面積を求めよ.

32-B-7 F628B

$$xy$$
 平面上に,媒介変数 $\theta\left(-\frac{\pi}{4} \le \theta \le \frac{\pi}{4}\right)$ を用いて表される曲線 $C: x = \tan \theta, \quad y = \cos 2\theta$

がある.

- (1) Cの概形をかけ、
- (2) Cとx軸で囲まれる図形の面積を求めよ.

32-B-8 F629B

t>0とする. 曲線 $y=\log x$ と x 軸と 2 直線 $x=t,\ x=t+1$ で囲まれた図形の面積の最小値を求めよ.

32-B-9 * F630B

曲線 $y=\sin 2x$ $\left(0 \le x \le \frac{\pi}{2}\right)$ と x 軸で囲まれた図形の面積を、曲線 $y=a\sin x$ が二等分するような定数 a の値を求めよ。

C問題

32-C-1 F615C

0以上の整数 n に対して、 $I_n = \int_0^{\frac{\pi}{4}} \tan^n x \, dx$ とする。ただし、 $\tan^0 x = 1$ とする。

- (1) I_0 , I_1 の値をそれぞれ求めよ.
- (2) $I_n + I_{n+2} = \frac{1}{n+1}$ を示せ.
- (3) $\lim_{n\to\infty} I_n = 0$ を示せ.
- (4) 1以上の整数 n に対して,

$$S_n = 1 - \frac{1}{3} + \frac{1}{5} - \dots + (-1)^{n-1} \frac{1}{2n-1}$$
$$T_n = \frac{1}{2} - \frac{1}{4} + \frac{1}{6} - \dots + (-1)^{n-1} \frac{1}{2n}$$

とするとき、 および の値を求めよ。

32-C-2 F623C

曲線 $2x^2 - 2xy + y^2 = 4$ で囲まれた図形の面積を求めよ.

32-C-3 F624C

曲線 $y^2 = x^2(4-x^2)$ で囲まれた図形の面積を求めよ.

32-C-4 F チャレ 77 京都大学 次の極限値を求めよ.

$$\lim_{n\to\infty} \int_0^{n\pi} e^{-x} |\sin nx| \, dx$$

32-C-5 Fチャレ 78 2006 大阪大学

曲線 $C: y = x \sin^2 x$ と直線l: y = x の共有点のうち、x 座標が正のものを、x 座標が小さいものから順に A_1 、 A_2 、 A_3 、 \dots とし、第n 番目のものを A_n とする。

- (1) 点 A_n の x 座標を求めよ。また、点 A_n において、C と l は接していることを示せ。
- (2) 線分 A_nA_{n+1} と C で囲まれる図形の面積を求めよ.

32-C-6 F631C

媒介変数 θ $(0 \le \theta \le 2\pi)$ を用いて,

$$x = \cos^3 \theta, \quad y = \sin^3 \theta$$

と表される曲線で囲まれた図形の面積を求めよ、

32-C-7 F631C

媒介変数 t を用いて,

$$\begin{cases} x = t^2, \\ y = 2 + t - t^2 \end{cases}$$

と表される曲線とx軸で囲まれた図形の面積を求めよ。

演習問題

32-E-1

曲線 $C: y = \cos x$ $\left(0 \le x \le \frac{\pi}{2}\right)$ と直線 l: y = ax (a > 0) および y 軸で囲まれる図形の面積を S_1 とする。 また,C と l および直線 $x = \frac{\pi}{2}$ で囲まれる図形の面積を S_2 とし, $S = S_1 + S_2$ とする。 このとき,S の最小値を求めよ。

32-E-2

以下、Coming soon!!