第35章 有名曲線(数Ⅲ, Ⅰ講分)

A問題

35-A-1 F409A

次の媒介変数表示はどのような曲線を表すか.

$$(1) \begin{cases} x = 2t^2 + 1 \\ y = t + 2 \end{cases}$$

(2)
$$\begin{cases} x = 5\cos\theta \\ y = 3\sin\theta \end{cases}$$

(3)
$$\begin{cases} x = 3\tan\theta \\ y = \frac{2}{\cos\theta} \end{cases}$$

35-A-2

曲線 $\begin{cases} x = t - \sin t \\ y = 1 - \cos t \end{cases}$ (0 $\leq t \leq \pi$) と x 軸および直線 $x = \pi$ とで囲まれる部分の面積 S を求めよ。

35-A-3 F414B *

座標平面上の円 $C: x^2 + y^2 = 16$ の内側を半径 1 の円D が滑らずに転がる。 さらに、時刻 t において、D は点 $T(4\cos t, 4\sin t)$ で C と接している。

時刻0において、点(4, 0)にあったD上の点Pの時刻tにおける座標(x, y)を求めよ.

35-A-4 F415C *

座標平面上に原点 O を中心とする半径 2 の円 C_1 がある。半径 1 の円 C_2 が C_1 に外接しながら滑ることなく転がるとき, C_2 上の定点 P が描く曲線について考える。 C_2 の中心を Q とし,Q が点 (3,0) にあるとき,P は点 (2,0) にあるとする。

x軸の正の方向から線分 OQ に測った角を θ とするとき,P の座標 (x, y) を θ を用いて表せ.

35-A-5 F416C *

原点 O を中心とする半径 2 の円 C に、長さ 4π の糸が一端を点 A(2,0) に固定して、時計回りに巻きつけてある。この糸の他端 P を引っ張りながらほどいていく。糸と円 C の接点を T、 $\angle AOT = \theta$ とする。T が A と一致するまでに P が描く曲線の方程式を、媒介変数 θ を用いて表せ。

B問題

35-B-1 F412B *

次の媒介変数表示はどのような曲線を表すか.

(1)
$$\begin{cases} x = \frac{2(1-t^2)}{1+t^2} \\ y = \frac{2t}{1+t^2} \end{cases}$$

(2)
$$\begin{cases} x = 2\left(t + \frac{1}{t} + 1\right) \\ y = t - \frac{1}{t} \end{cases}$$

35-B-2

円 $C: x^2+y^2=9$ の内側を半径 1 の円 D が滑らずに転がる。時刻 tにおいて D は点 $(3\cos t,\ 3\sin t)$ で C に接している。

- (1) 時刻 t=0 において点 (3 , 0) にあった D上の点 Pの時刻 tにおける座標 $(x(t),\ y(t))$ を求めよ。 $0 \le t \le \frac{2}{3}\pi$ とする。
- (2) (1)の範囲で点 Pの描く曲線の長さを求めよ。

35-B-3

- xy 平面上に原点 O を中心とする半径 1 の円 C がある。半径 $\frac{1}{n}$ (n は自然数) の円 C_n が C に外接しながらすべることなく反時計回りに転がるとき, C_n 上の点 C の軌跡を考える。ただし,最初 C に入 C
- (1) O を端点とし C_n の中心を通る半直線が x 軸の正の向きとなす角が θ となるときの P の座標を n と θ で表せ。
- (2) P が初めて A に戻るまでの P の軌跡の長さ l_n を求めよ。
- (3) (2) で求めた l_n に対し、 $\lim_{n\to\infty}l_n$ を求めよ。

35-B-4 *

a>0 とする。長さ $2\pi a$ のひもの一方の端が半径 a の円 $x^2+y^2=a^2$ 上の点 A(a,0) に固定してあり、その円に時計回りに巻きつけてある。このひもをピンと伸ばしながら円からはずしていくとき、ひもの他方の端 P が描く曲線の長さを求めよ。

35-B-5 *

$$-\frac{\pi}{2} \le t \le \frac{\pi}{2}$$
 とする。媒介変数 t で表された曲線 $\begin{cases} x = \cos 2t \\ y = \sin 3t \end{cases}$ c とする。

- (1) 曲線 Cで囲まれた図形の面積を求めよ。
- (2) 曲線 Cで囲まれた部分を x軸の周りに 1回転して得られる図形の体積を求めよ。

35-B-6 F21B

座標平面上を運動する点 Pがある。点 Pは点 (0 , 1)を出発して,曲線 $y=\frac{e^x+e^{-x}}{2}$ $(x \ge 0)$ 上を毎秒 1 の速さで動いている。点 Pの t 秒後の座標を (f(t) ,g(t) で表すとき,f(t) ,g(t) を求めよ。

35-B-7

曲線 $y=e^{-x}\sin x$ $(x\geq 0)$ と x軸で囲まれた図形で、x 軸の上側にある部分の面積を y軸に近い方から順に S_0 、 S_1 、……、 S_n 、…… とするとき、 $\lim_{n\to\infty}\sum_{k=0}^n S_k$ を求めよ。

C問題

35-C-1 F421B (再掲)

座標上の 2 定点 $A(\sqrt{2}, 0)$, $B(-\sqrt{2}, 0)$ に対して,条件 $PA \cdot PB = 2$ を満たして動く点 P(x, y) を考える。 $x = r\cos\theta$, $y = r\sin\theta\left(0 < \theta < \frac{\pi}{4}, r > 0\right)$ とする。

- (1) $r^2 = 4\cos 2\theta$ が成り立つことを示せ
- (2) 三角形 PAB の面積の最大値を求めよ、また、このときの点 P の座標を求めよ、

35-C-2 F423C

xy 平面で原点 O を極とし、x 軸の正の向きを始線とする極座標を考える。

この極座標で $r=f(\theta)=1-\cos\theta\left(\frac{\pi}{2}\le\theta\le\pi\right)$ と表される曲線 C と,x 軸,y 軸とで囲まれる領域の面積 S は,

$$S = \int_{\frac{\pi}{2}}^{\pi} \frac{1}{2} \{f(\theta)\}^2 d\theta$$

で与えられることを示し、この値を求めよ.

35-C-3 F424C

- (1) a, e を正の定数, 点 A の極座標を (a, 0) とし、A を通り始線 OX に垂直な直線を l とする。点 P から l に 下ろした垂線の足を H とするとき、 $e=\frac{OP}{PH}$ であるような点 P の軌跡の極方程式を求めよ。ただし、極を O とする。
- (2) e>1 のとき、(1) で求めた P の軌跡の極方程式を、直交座標に関する方程式で表せ、
- (3) 双曲線 H の 2 つの弦 AB, CD が H の 1 つの焦点 F を通り、互いに直交するとき、

$$\frac{1}{\mathrm{AB}} + \frac{1}{\mathrm{CD}}$$

の値は一定であることを示せ.