グラフ予想図 和と積のチェック

問題 1 次の関数の増減と極値を調べて、そのグラフをかけ。

$$y = (1 + \cos x)\sin x \quad (0 \le x \le 2\pi)$$

$$f(x) = (1 + \cos x)\sin x$$
 $\text{ this } <$

$$f'(x) = -\sin x \times \sin x + (1 + \cos x) \times \cos x$$

$$= -\sin^{2} x + \cos x + \cos^{2} x$$

$$= 2\cos^{2} x + \cos x - 1$$

$$= (2\cos x - 1)(\cos x + 1)$$

$$f'(x)=0$$
 となるのは、 $\cos x=rac{1}{2},\,-1$

つまり、
$$x = \frac{\pi}{3}$$
、 π 、 $\frac{5\pi}{3}$ のとき。

\boldsymbol{x}	0		$\frac{\pi}{3}$		π		$\frac{5\pi}{3}$		2π
f'(x)		+	0	_	0	_	0	+	
f(x)		7		>		>		7	

極大値
$$f\left(\frac{\pi}{3}\right) = \frac{3\sqrt{3}}{4}$$

極小値
$$f\left(rac{5\pi}{3}
ight) = -rac{3\sqrt{3}}{4}$$

$$f(\pi) = 0$$

西端
$$f(0) = f(2\pi) = 0$$

問題2 次の関数の増減,凹凸を調べ,グラフをかけ。

$$y = xe^{-x}$$

$$f(x) = xe^x$$
 とおく

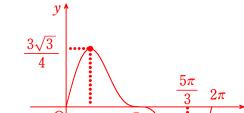
$$f'(x) = 1 \times e^{-x} + x \times e^{-x} \cdot (-1) \qquad f''(x) = -1 \times e^{-x} + (1-x) \times e^{-x} \cdot (-1)$$
$$= (1-x)e^{-x} \qquad \qquad = (x-2)e^{-x}$$

\boldsymbol{x}		1		2	•••
f'(x)	+	0	_	_	_
$\overline{f''(x)}$	_	_	_	0	+
f(x)	^		\		<i>\</i>

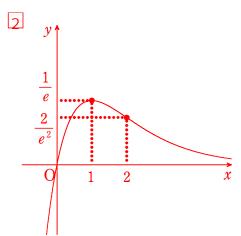
極大値
$$f(1) = 1 \times e^{-1} = \frac{1}{e}$$

変曲点
$$f(2) = 2 \times e^{-2} = \frac{2}{e^2}$$

西端
$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{x}{e^x} = \lim_{x \to \infty} \frac{1}{e^x} = 0$$
 $\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} x \cdot e^{-x} = -\infty$



1



問題3 次の関数の増減、凹凸を調べ、グラフの概形をかけ。

$$y = x \log x - x$$

真数条件より
$$x > 0$$

$$f'(x) = 1 \times \log x + x \times \frac{1}{x} - 1$$

$$=\log x$$

$$f'(x)=0$$
 となるのは $\log x=0$

つまり
$$x=1$$
 のとき

$$f''(x) = \left(\log x\right)'$$

$$=\frac{1}{x}>0$$

$$[f''(x)=0$$
となる x は存在しない。]

\boldsymbol{x}	0		1	
f'(x)		_	0	+
$\overline{f''(x)}$		+	+	+
$\overline{f(x)}$		\		♪

極小値
$$f(1) = -1$$

両端

$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} x (\log x - 1) = \infty$$

$$\lim_{x\to 0} f\left(x\right) = \lim_{x\to 0} \left(x\log x - x\right)$$

$$= \lim_{x \to 0} \frac{\log x}{\frac{1}{x}} = \lim_{x \to 0} \frac{\frac{1}{x}}{-\frac{1}{x^2}}$$

$$=\lim_{x\to 0}(-x)=0$$

問題4 次の関数のグラフの概形をかけ。

$$y = \frac{\log x}{x}$$

真数条件よりx > 0

$$f(x) = \frac{\log x}{x}$$
 とおくと.

$$f'(x) = \frac{\frac{1}{x} \times x - \log x \times 1}{x^2}$$
$$= \frac{1 - \log x}{x^2}$$

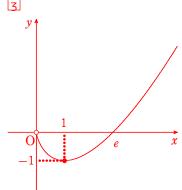
$$f'(x) = 0$$
 となるのは $\log x = 0$ つまり $x = e$ のとき。

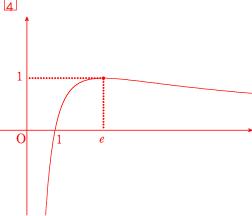
\boldsymbol{x}	0		e	
f'(x)		+	0	_
$\overline{f(x)}$		7		/

$$f(x)$$
 | | / | | 極大値 $f(e) = \frac{1}{e}$

西端
$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{\log x}{x} = \lim_{x \to \infty} \frac{\frac{1}{x}}{1} = 0$$

$$\lim_{x\to 0} f(x) = \lim_{x\to 0} \frac{1}{x} \times \log x = -\infty$$





問題5 次の曲線のグラフをかけ。

$$y^2 = x^2 (x+3)$$

$$y = \pm x\sqrt{x+3}$$

ルート内:
$$x+3 \ge 0$$
 より、

$$x > -3$$

$$f(x) = x\sqrt{x+3} \ge \sharp < \succeq$$
,

求めるグラフは
$$y = f(x)$$
と

$$y = -f(x)$$
 を合わせたもので、

それらはx軸対称

$$f(x) = x(x+3)^{\frac{1}{2}} + 1$$

$$f'(x) = 1 \times (x+3)^{\frac{1}{2}} + x \times \frac{1}{2}(x+3)^{-\frac{1}{2}}$$

$$= \sqrt{x+3} + \frac{x}{2\sqrt{x+3}}$$

$$= \frac{2(x+3) + x}{2\sqrt{x+3}}$$

$$= \frac{3(x+2)}{2\sqrt{x+3}}$$

$$f'(x)=0$$
 となるのは $x=-2$ のとき

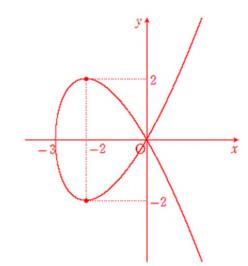
\boldsymbol{x}	-3		-2	
$\overline{f'(x)}$		_	0	+
$\overline{f(x)}$		\		7

極小値
$$f(-2)=-2$$

両端
$$f(-3)=0$$

$$\lim_{x \to \infty} f(x) = \infty$$

$$[f(0)=0]$$



問題6 次の関数のグラフをかけ。

$$f(x) = x + \sqrt{1 - x^2}$$

ルート内:
$$1-x^2 \ge 0$$
 より $-1 \le x \le 1$

$$f(x) = x + \left(1 - x^2\right)^{\frac{1}{2}} + y$$

$$f'(x) = 1 + \frac{1}{2} (1 - x^2)^{-\frac{1}{2}} \times (-2x)$$

$$= 1 - \frac{x}{\sqrt{1 - x^2}}$$
$$= \frac{\sqrt{1 - x^2} - x}{\sqrt{1 - x^2}}$$

$$f'(x)=0$$
 となるのは、

$$\sqrt{1-x^2} = x$$

$$1-x^2 = x^2 \quad \text{find } x \ge 0$$

$$x^2 = \frac{1}{2} \quad \text{find } x \ge 0$$

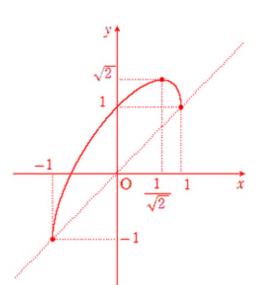
つまり
$$x = \frac{1}{\sqrt{2}}$$
のとき

		•	_		
\boldsymbol{x}	-1		$\frac{1}{\sqrt{2}}$		1
f'(x)		+	0	_	
$\overline{f(x)}$		7		\	

極大値
$$f\left(\frac{1}{\sqrt{2}}\right) = \sqrt{2}$$

西端
$$f(-1) = -1$$
, $f(1) = 1$

$$[f(0)=1]$$



問題7 次の関数のグラフをかけ。

$$y = \frac{x^2 + 3x + 3}{x + 2}$$

分母
$$\neq 0$$
 より、 $x \neq -2$

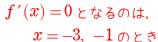
$$f(x) = \frac{x^2 + 3x + 3}{x + 2}$$
 \tag{5} \land \frac{1}{x + 2}
= $x + 1 + \frac{1}{x + 2}$
= $x + 1 + (x + 2)^{-1}$

$$f'(x) = 1 + (-1)(x+2)^{-1}$$

$$= 1 - \frac{1}{(x+2)^2}$$

$$= \frac{(x+2)^2 - 1}{(x+2)^2}$$

$$= \frac{(x+3)(x+1)}{(x+2)^2}$$



極大値
$$f(-3) = -3$$

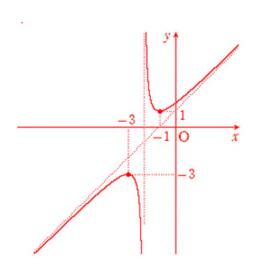
極小値
$$f(-1)=1$$

両端
$$[\lim_{x\to +\infty} f(x) = \pm \infty]$$

$$\lim_{x \to \pm \infty} \frac{1}{x+2} = 0$$
 より、 $y = x+1$ が漸近線

また,
$$\lim_{x \to -2} f(x) = \pm \infty$$
 より, 午分母ゼロ

$$x=-2$$
 が漸近線



問題8 次の関数の増減を調べグラフをかけ。

$$y = \frac{x}{(x-1)^2}$$

分母
$$\neq 0$$
 より、 $x \neq 1$

$$f(x) = \frac{x}{(x-1)^2} = x(x-1)^{-2} \ge 5 \le 5$$

$$f'(x) = 1 \times (x-1)^{-2} + x \times (-2)(x-1)^{-3}$$

$$= \frac{1}{(x-1)^2} - \frac{2x}{(x-1)^3}$$

$$= \frac{(x-1) - 2x}{(x-1)^3}$$

$$= -\frac{x+1}{(x-1)^3}$$

$$f'(x) = 0$$
 となるのは $x = -1$ のとき

\boldsymbol{x}		-1		1	• • •
$\overline{f'(x)}$	_	0	+	X	_
$\overline{f(x)}$	\		7	X	\

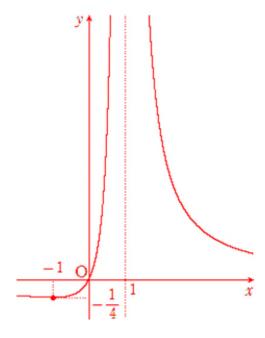
極小値
$$f\left(-1
ight)=-rac{1}{4}$$

$$f(0) = 0$$

両端
$$\lim_{x \to +\infty} f(x) = 0$$
 より

$$y=0$$
 が漸近線

$$x=1$$
が漸近線



問題 9 方程式 $\sin x = ae^x$ が $0 \le x \le 2\pi$ に実数解を持つようなa の範囲を求めよ。

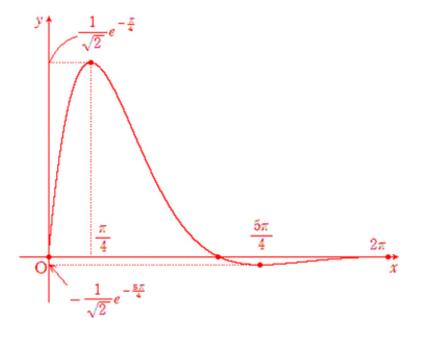
$$\dfrac{\sin x}{e^x}=a$$
 $e^{-x}\sin x=a$ $f(x)=e^{-x}\sin x$ とおくと、 方程式 $\sin x=ae^x$ の解は、 $y=f(x)$ と $y=a$ のグラフの共有点の x 座標に対応する。

$$f'(x) = -e^{-x}\sin x + e^{-x}\cos x$$
$$= e^{-x}(\cos x - \sin x)$$

$$f'(x)=0$$
 となるのは、 $\cos x=\sin x \Leftrightarrow \tan x=rac{\sin x}{\cos x}=1$ つまり、 $x=rac{\pi}{4},rac{5\pi}{4}$ のとき。

\boldsymbol{x}	0		$\frac{\pi}{4}$	•••	$\frac{5\pi}{4}$		2π
$\overline{f'(x)}$		+	0	_	0	+	
$\overline{f(x)}$		7		>		7	

極値
$$f\left(\frac{\pi}{4}\right) = e^{-\frac{\pi}{4}} \sin\frac{\pi}{4} = \frac{1}{\sqrt{2}} e^{-\frac{\pi}{4}}$$
 , $f\left(\frac{5\pi}{4}\right) = e^{-\frac{5\pi}{4}} \sin\frac{5\pi}{4} = -\frac{1}{\sqrt{2}} e^{-\frac{5\pi}{4}}$ よって, $-\frac{1}{\sqrt{2}} e^{-\frac{5\pi}{4}} \le a \le \frac{1}{\sqrt{2}} e^{-\frac{\pi}{4}}$



【例題 01】 $b \ge a > 0$ とする。不等式 $\log b - \log a \ge \frac{2(b-a)}{b+a}$ を証明せよ。 【方針】 $x = \frac{b}{a}$ と置き換え

【例題 02】
$$0< a < b$$
 とする。不等式 $-(a+1)e^{-a}<rac{(b+2)e^{-b}-(a+2)e^{-a}}{b-a}<-(b+1)e^{-b}$

を証明せよ。

【方針】平均値の定理

【例題 03】
$$a$$
 と b を正の数とする。このとき, $\sqrt{a^ab^b} \geq \left(\frac{a+b}{2}\right)^{\frac{a+b}{2}}$ を証明せよ。
【方針】凸関数の利用

【例題 04】 a,b を正の数とする。不等式 $a\log(1+a)+e^b>1+ab+b$ を証明せよ。 【方針】一文字固定

YAWARAKA 先生のテキスト ③3 微分計算

標準問題

③**3-標-1** 次の関数を微分せよ。

$$(1) \quad y = 2^x \sin x$$

(1)
$$y = 2^x \sin x$$
 (2) $y = \frac{\cos x}{1 + \sin x}$ (3) $y = \tan^3 x$

$$(3) \quad y = \tan^3 x$$

(4)
$$y = (x^2 + 1)e^{-2x}$$

(4)
$$y = (x^2 + 1)e^{-2x}$$
 (5) $y = \log \frac{1 + \sin x}{1 - \sin x}$ (6) $y = \log (x + \sqrt{x^2 + 1})$

$$6) \quad y = \log\left(x + \sqrt{x^2 + 1}\right)$$

[1] (1)
$$y' = (\sin x \cdot \log 2 + \cos x) \cdot 2^x$$
 (2) $y' = -\frac{1}{1 + \sin x}$

(2)
$$y' = -\frac{1}{1 + \sin x}$$

(3)
$$y' = 3\tan^2 x (1 + \tan^2 x) = \frac{3\tan^2 x}{\cos^2 x}$$

(4)
$$y' = 2(-x^2 + x - 1)e^{-2x}$$
 (5) $y' = \frac{2}{\cos x}$

(5)
$$y' = \frac{2}{\cos x}$$

(6)
$$y' = \frac{1}{\sqrt{x^2 + 1}}$$

③**3-標-2**(1) $y = x^{\log x}$ を微分せよ

(2)
$$x^2 + xy + y^2 = 4$$
 のとき、 $\frac{dy}{dx}$ を x と y の式で表せ。

(3)
$$y = \tan x \left(-\frac{\pi}{2} < x < \frac{\pi}{2}\right)$$
の逆関数の導関数を x の式で表せ。

[2] (1)
$$\frac{dy}{dx} = 2x^{\log x - 1} \cdot \log x$$
 (2) $\frac{dy}{dx} = -\frac{2x + y}{x + 2y}$ (3) $\frac{dy}{dx} = \frac{1}{1 + x^2}$

$$(3) \ \frac{dy}{dx} = \frac{1}{1+x^2}$$

③3-標-3

$$x=1-\cos\theta$$
, $y=\theta-\sin\theta$ のとき, $\frac{d^2y}{dx^2}$ を θ で表せ。

[3]
$$\frac{d^2y}{dx^2} = \frac{1}{\sin\theta (1 + \cos\theta)}$$

③3-標-4

曲線 $x^{\frac{2}{3}}+y^{\frac{2}{3}}=1$ の接線とx軸,y軸で囲まれた三角形の面積の最大値を求めよ。

【4】
$$\frac{1}{4}$$
 方針=Asteroid のパラメータ表示

$$y = \sin x + \frac{1}{2}\sin 2x + \frac{1}{3}\sin 3x \qquad (0 \le x \le \pi)$$

極小値
$$\frac{\sqrt{3}}{4} \left(x = \frac{2}{3} \pi \right)$$
 極大値 $\frac{2\sqrt{2}}{3} + \frac{1}{2} \left(x = \frac{\pi}{4} \right)$, $\frac{2\sqrt{2}}{3} - \frac{1}{2} \left(x = \frac{3}{4} \pi \right)$

③ 3-標-6 次の関数の増減,凹凸を調べ,グラフをかけ。
$$y=xe^{-x}$$

[解答]
$$f(x)=xe^{-x}$$
 より

$$f'(x) = (1-x)e^{-x}, \quad f''(x) = (x-2)e^{-x}$$

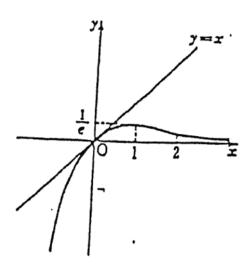
よって、関数f(x)の増減表と凹凸表は次のようになる。

x			1		∞
f'(x)		+	0	_	
f(x)	-∞	7	極大	\swarrow	0

$$\lim xe^{-s}=0$$

$$\lim_{x \in S} x = -\infty$$

	· · · · · · · · · · · · · · · · · · ·	
x	2	
_ f''(x)	- 0 +	
f(x)	へ 変曲点 ∪	変曲点 $\left(2,\frac{2}{\epsilon^2}\right)$
		\ ' e'/



【解答】13 談話室マロニエ 道具箱(③3・微分+応用)

③**3-標-7** $y=x(\log x)^2$ の増減、凹凸を調べ、そのグラフの概形をかけ。

圏園 変域 x>0 において、 $y=x(\log x)^2$ を徴分して $y' = (\log x)^2 + x \cdot 2\log x \cdot (\log x)' = (\log x + 2)\log x$ y'=0 とおくと, $\log x = -2$, 0 から $x=e^{-2}$, 1

なお, $x \rightarrow +0$ のとき, $\log x = -t$ とおくと, $x = e^{-t}$, $t \rightarrow +\infty$

$$\lim_{x \to +0} y = \lim_{t \to +\infty} (e^{-t}) \cdot t^2 = \lim_{t \to +\infty} \frac{t^2}{e^t} = \lim_{t \to +\infty} \frac{2t}{e^t} = \lim_{t \to +\infty} \frac{2}{e^t} = 0$$

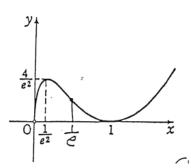
であることを考えに入れて、 yの値の変化を表にすると

x	0		$\frac{1}{e^2}$		1		+∞
<i>y'</i>		+	0	_	0	+	
у	0	×	$\frac{4}{e^2}$	×	0	A	+∞

したがって, yの極大値・極小値は

$$x=\frac{1}{e^2}$$
 のとき 極大値 $\frac{4}{e^2}$, $x=1$ のとき

極小値 0 でグラフは右のようになる.



③ 3-標-8 次の関数の極値を求め、そのグラフの概形をかけ。

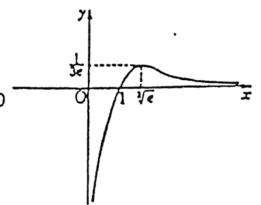
$$y = \frac{\log x}{x^3}$$

$$y' = \frac{1 - 3 \log x}{x^4} \quad (x > 0)$$

$$y'=0$$
 のとき $x=\sqrt[3]{e}$, $\lim_{x\to\infty}\frac{\log x}{x^3}=0$

yの増減の状態を調べると

x=Ve で極大値 $\frac{1}{3e}$



談話室マロニエ 道具箱 (③3·微分+応用) 【**角子答**】 | 4

③ 3-標-9 次の曲線の概形をかけ。
$$y^2 = x^2(x+3)$$

$$v^{1}=x^{1}(x+3)$$

$$x \ge -3, \quad y = \pm x \sqrt{x+3}$$

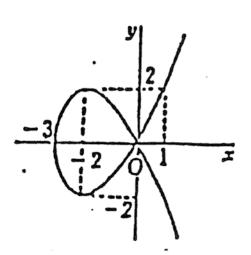
$$y = f(x) = x \sqrt{x+3}$$

$$x \ge -3, \quad y = \pm x \sqrt{x+3}$$

$$y = f(x) = x \sqrt{x+3}$$

$$x \ge -3, \quad y = \pm x \sqrt{x+3}$$

$$y = f(x) = \frac{3(x+2)}{2\sqrt{x+3}}$$



③**3-標-10** 次の曲線の概形をかけ。 $y^2 - 2x^2y + x^4 + x^2 - 2 = 0$

$$= \frac{x[4(2-x^{2})-1]}{\sqrt{2}-x^{2}(2\sqrt{2}-x^{2}+1)} = \frac{-4x(x^{2}-\frac{7}{4})}{\sqrt{2}-x^{2}(2\sqrt{2}-x^{2}+1)}$$

$$= \frac{-4x(x+\frac{\sqrt{7}}{2})(x-\frac{\sqrt{7}}{2})}{\sqrt{2}-x^{2}(2\sqrt{2}-x^{2}+1)}$$

$$= \frac{-\sqrt{2}(x+\frac{\sqrt{7}}{2})(x-\frac{\sqrt{7}}{2})}{\sqrt{2}-x^{2}(2\sqrt{2}-x^{2}+1)}$$

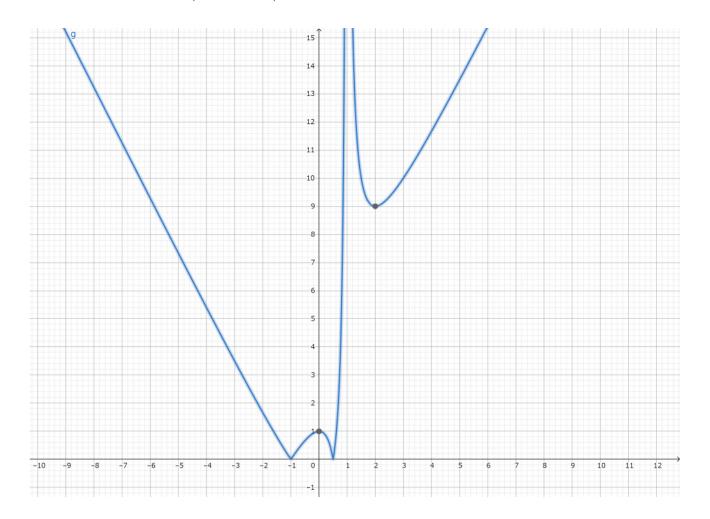
$$\pm t = g'(x) = x\left(2 + \frac{1}{\sqrt{2-x^2}}\right)$$

.π	- \(2	•••	1-1/2	•••	0	•	$\frac{\sqrt{7}}{2}$	•••	12
ſ'	+ %	+	0	-	. 0	+	0		
ſ	2	!	9	\	√2	/	कोच	\	. 2

· =	-12	•••	0	•••	12
9'	8	-	0	.+	+60
g	2	\	$-\sqrt{2}$	1	2

		, .	
(-√2.2)	(; <u>}</u>	1 (12	,2)
,	\ ₀	9. Ji	•
- 7.			
		$i-\sqrt{2}$	

③ 3-標-11 関数 $f(x) = \left| rac{2x^2 + x - 1}{x - 1} \right|$ について、極値を求め、グラフの概形をかけ。



【解答】16 談話室マロニエ 道具箱(③3・微分+応用)

発展問題

③**3-発-1** x>0 の範囲で定義される関数 $f(x)=\left(\frac{e}{x}\right)^{\log x}$ について,y=f(x) の増減,凹凸を調 べ、そのグラフの概形をかけ。

y=f(x)とおいて両辺対数をとると。 $\log y = \log x(\log e - \log x)$

$$\frac{y'}{y} = \frac{1-2\log x}{x}$$

ェ>0 より、/(ェ)>0 である。増減表 は右のようになり.

x	0	•••	$e^{\frac{1}{2}}$	
y'		+	0	_
у		1		١,

 $1-2\log x=0$, つまり $x=e^{\frac{1}{2}}$ のとき、極大値をとり、 その値は

$$f(e^{\frac{1}{2}}) = \left(\frac{e}{e^{\frac{1}{2}}}\right)^{\log r_1^2} = e^{\frac{1}{4}}$$

(2)
$$y'' = \frac{2y(2\log x + 1)(\log x - 1)}{x^2}$$

 $(2 \log x + 1)(\log x - 1) = 0$ 1 5

$$z = e^{-\frac{1}{2}}$$
, e

凹凸表は右の通り、

$f(e^{-\frac{1}{2}})$	=(ef)-	ケームゴ
f(a) =	1	

x	0	•••	$e^{-\frac{1}{2}}$	•••	ø	
y"		+	0	-	0	+
У		U		Λ		U

より、変曲点は (e-1, e-1), (e, 1)

(3) $\lim_{x\to\infty} \log f(x) = \lim_{x\to\infty} \log x(1-\log x)$ であるが

limlogx=-∞ だから

$$\lim_{x\to 0} \log f(x) = -\infty \qquad \therefore \quad \lim_{x\to 0} f(x) = 0$$

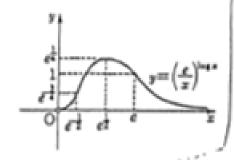
$$\lim_{x\to +\infty} f(x) = 0$$

 $\lim \log x = +\infty$ たから

$$\lim \log f(x) = -\infty$$

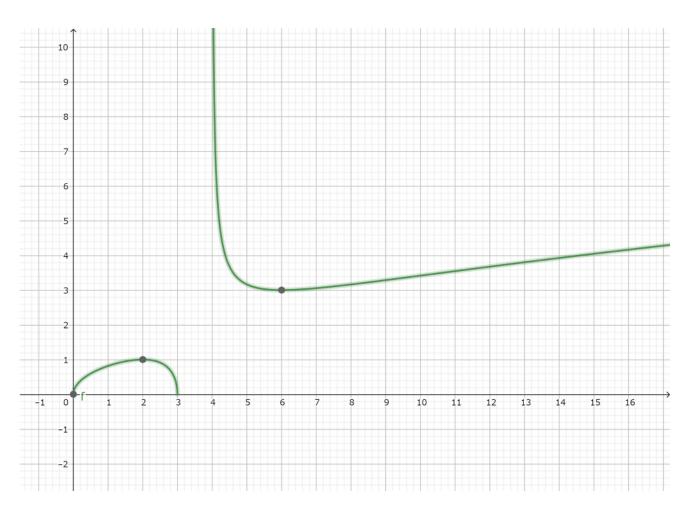
$$\lim_{x \to \infty} f(x) = 0$$

(1)、(2)、(3)により、グ ラフの概形は右のとお ŋ.



③**3-発-2**
$$y = \sqrt{\frac{x(x-3)}{x-4}}$$
 のグラフを描け。

【解答】略



③**3-**発**-3** 曲線 $y = (x+1)^{\frac{1}{3}} (x-2)^{\frac{2}{3}}$ について、(1) 漸近線の方程式、(2) y の増減、(3)曲線の凹凸 を調べ、その概形をかけ。

(1)
$$\lim_{x \to \pm \infty} \frac{y}{x} = \lim_{x \to \pm \infty} \left(1 + \frac{1}{x}\right)^{\frac{1}{2}} \left(1 - \frac{2}{x}\right)^{\frac{2}{3}} = 1$$

だから、湖近線があれば、その頃きは1である。その切片をひとすれば

$$b = \lim_{x \to \pm \infty} (y - x) = \lim_{x \to \pm \infty} \{(x+1)^{\frac{1}{2}} (x-2)^{\frac{2}{2}} - x\}$$

$$= \lim_{t \to 0} \left\{ \left(\frac{1}{t} + 1 \right)^{\frac{1}{2}} \left(\frac{1}{t} - 2 \right)^{\frac{2}{2}} - \frac{1}{t} \right\} = \lim_{t \to 0} \frac{(1+t)^{\frac{1}{2}} (1-2t)^{\frac{2}{2}} - 1}{t}$$

$$= \lim_{t \to 0} \left\{ \frac{1}{3} (1+t)^{-\frac{2}{2}} (1-2t)^{\frac{2}{3}} - \frac{4}{3} (1+t)^{\frac{1}{2}} (1-2t)^{-\frac{1}{3}} \right\} = \frac{1}{3} - \frac{4}{3} = -1$$

よって、漸近線の方程式は ソニエー1

(2)
$$y' = \frac{1}{3}(x+1)^{-\frac{5}{2}}(x-2)^{\frac{7}{2}} + \frac{2}{3}(x+1)^{\frac{1}{2}}(x-2)^{-\frac{1}{2}}$$

= $\frac{1}{3}(x+1)^{-\frac{5}{2}}(x-2)^{-\frac{1}{2}}\{x-2+2(x+1)\} = x(x+1)^{-\frac{7}{2}}(x-2)^{-\frac{1}{2}}$

したがって、10地波は、次の姿のようになる。

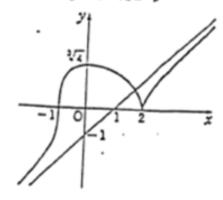
z	-∞		-1		0		2		+∞
у'		÷	÷∞	÷	. 0	-	≟∞	÷	
у	-∞	Х	0	×	ジ 7 征大	`*	0. 極小	×	+∞

(3)
$$y'' = (x+1)^{-\frac{2}{3}} (x-2)^{-\frac{1}{3}} - \frac{2}{3} x(x+1)^{-\frac{4}{3}} (x-2)^{-\frac{1}{3}} - \frac{1}{3} x(x+1)^{-\frac{5}{3}} (x-2)^{-\frac{1}{3}}$$
$$= \frac{1}{3} (x+1)^{-\frac{4}{3}} (x-2)^{-\frac{4}{3}} \{3(x+1)(x-2) - 2x(x-2) - x(x+1)\}$$
$$= -2(x+1)^{-\frac{4}{3}} (x-2)^{-\frac{4}{3}}$$

したがって、メベー1 のとき ゾン0. エンー1 のとき ゾベ だから

以上調べたことから、曲線の概形は、 右の図のようになる。

(x=-1, x=2) における曲線の接線は、x軸に垂直になっている)



談話室マロニエ 道具箱 (③3・微分+応用) 【角子答】 19

③**3-発-4** xy 平面上の曲線 $y=\cos\left(\sqrt{\frac{\pi}{2}}x\right)$ と,原点を中心とする半径r の円との共有点の個数N(r)を求めよ。

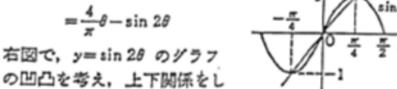
図題(微分法の方程式への応用)

$$x^2 + y^2 = r^2$$
 .. $x^2 + \cos^2(\sqrt{\frac{\pi}{2}}x)^2 = r^2$

$$\therefore \quad \frac{2}{\pi}\theta^2 + \cos^2\theta = r^2 \qquad \left(\theta = \sqrt{\frac{\pi}{2}}x\right)$$

の解を考える。 $f(\theta) = \frac{2}{\pi}\theta^2 + \cos^2\theta$ とおくと

$$f'(\theta) = \frac{4}{\pi}\theta - 2\cos\theta\sin\theta$$
$$= \frac{4}{\pi}\theta - \sin 2\theta$$



らべるととによ り、 f'(8) の符 ' 号の変化は右の 波のようになる。 $f(\theta)$ は偶関数で

・ある。

٠	8		$-\frac{\pi}{4}$		0		74	
	f'(8)	-	0	+	0	-:	0	+
	f(0)	`		1		`		/

$$f\left(\pm\frac{\pi}{4}\right) = \frac{\pi}{8} + \frac{1}{2}, \lim_{\theta - \pm \infty} f(\theta) = +\infty$$

曲線 $y=f(\theta)$ と直線 $y=r^2$ の交点の個数をしらべ。

(答)
$$\begin{cases} c = \sqrt{\frac{\pi}{8} + \frac{1}{2}} \text{ として, } N(r)\text{ は,} \\ 0 < r < a \text{ のとき 0,} \\ r = a \text{ のとき 2, } a < r < 1 \text{ のとき 4,} \\ r = 1 \text{ のとき 3, } r > 1 \text{ のとき 2} \end{cases}$$

談話室マロニエ 道具箱 (③3·微分+応用) 【**角子答**】 20

③**3-発-5** パラメータ表示 $\begin{cases} x=\theta-\sin\theta \\ y=1-\cos\theta \end{cases}$ $(-\pi \le \theta \le \pi)$ で与えられる曲線(サイクロイド)をC,中心 (a,1),半径1の円をBとする。 $0<a<\pi$ のとき,CとBの共有点はいくつ存在するか。

 $\lfloor 230 \rfloor$ (1) 円の方程式 $(z-\alpha)^2 + (y-1)^2 = 1$ に、C上の点の座標 $(z, y) = (\theta - \sin \theta, 1 - \cos \theta)$ を代入する:

$$(\theta - \sin \theta - \alpha)^2 + \cos^2 \theta = 1$$

$$\therefore (\theta - \alpha)(\theta - 2\sin \theta - \alpha) = 0$$

....o

-x<6<x における①の解 0 が、CとBの共有点を与える。

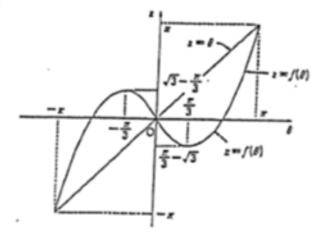
そこで f(0)=0-2 sin 0 とおくと:

$$f'(\theta) = 1 - 2 \cos \theta$$

であるから、 ƒ(d) の増減姿は

0	-=		$-\frac{\pi}{3}$		π 3		r
f'(t)		+	0	-	0	+	
f(0)	-r	7	$-\frac{\kappa}{3}+\sqrt{3}$	^	$\frac{r}{3} - \sqrt{3}$	7	x

となり、z=f(b) のグラフ は次のようになる。



①の解は、上の曲線 $z=f(\delta)$ および $z=\delta$ が直線 $z=\alpha$ と共有する点の δ 座標であるから、①の解の数は次のとおり、

α	٥١		$\sqrt{3} - \frac{r}{3}$		E
きの改	\mathbb{Z}	4	3	2	$\overline{/}$

談話室マロニエ 道具箱(③3・微分+応用) 【**角子答**】 21

③**3-発-6** 座標平面上に,媒介変数 θ で表された曲線 $\begin{cases} x=\theta-\sin\theta \\ y=1-\cos\theta \end{cases}$ $(0\leq\theta\leq 2\pi)$ がある。

この曲線上の異なる2点P, Qでの接線が互いに直交するとき, PQの中点の軌跡を求めよ。

談話室マロニエ 道具箱 (③3·微分+応用) 【**解答**】 22

③**3-発-7** 曲線 $y=\frac{1}{2}(e^x+e^{-x})$ 上の点 P(x,y) における接線 PT と,法線 PN とがx 軸と交わる点をそれぞれ T,N とする。ただし,x>0 とする。このとき,次の各問いに答えよ。

- (1) \triangle PTN の面積は, $\dfrac{y^4}{2y'}$ に等しいことを示せ。
- (2) 点 P(x,y) が曲線上を動くとき、 $\triangle PTN$ の面積が最小となる点 P の座標と最小値を求めよ。

談話室マロニエ 道具箱 (③3·微分+応用) 【**解答**】 23

③**3-発-8** 関数 $y=rac{bx+1}{x^2+ax}ig(a>0,\,b>0ig)$ が 2 つの極値 $-1,\,-4$ をとるように $a,\,b$ の値を求めよ。

[解]
$$y' = \frac{(x^2 + ax) \cdot b - (2x + a) \cdot (bx + 1)}{(x^2 + ax)^2}$$
①
$$= \frac{-(bx^2 + 2x + a)}{(x^2 + ax)^2}$$
②

②=0
$$\pm b$$
 $2x+a=-bx^2$ $\therefore \frac{bx+1}{x^2+ax} = \frac{b}{-bx^2} = -\frac{1}{x^2}$

a>0, b>0 より $bx^2+2x+a=0$ の解は明らかに負で

極値が
$$-1$$
 のとき, $-\frac{1}{x^2}=-1$ \therefore $x^2=1$ \therefore $x=-1$

極値が -4 のとき,
$$-\frac{1}{x^2} = -4$$
 $\therefore x = \frac{1}{4}$ $\therefore x = -\frac{1}{2}$

よって $\delta x^2 + 2x + a = 0$ の解は -1 と $-\frac{1}{2}$ で、解と係数の関係より

$$-1-\frac{1}{2}=-\frac{2}{b}$$
, $(-1)\cdot(-\frac{1}{2})=\frac{a}{b}$ $\therefore b=\frac{4}{3}$, $a=\frac{2}{3}$ ($\stackrel{\triangle}{=}$)

$$y = \frac{4x+3}{3x^2+2x}$$
, $y' = \frac{-6(2x+1)(x+1)}{(3x^2+2x)^2}$ より, y の増減は下のようになる.

x		-1		-23		$-\frac{1}{2}$	 0	···	
у у	- '	0	+ *.	×	+	0 -4	 ×	- `	

談話室マロニエ 道具箱 (③3・微分+応用) 【**角子答**】 24

③**3-発-9** 曲線 $y=\frac{a-x}{x^2+1}$ が相異なる3つの変曲点をもつとき,3つの変曲点は同一の直線上にあることを示せ。

(1) 変曲点は y'' の符号の変化で与えられるから、異なる 3 つの変曲点をもつとき、y''=0 は異なる 3 つの実数 解をもつ。よって

$$y' = \frac{x^2 - 2ax - 1}{(x^2 + 1)^2}$$
$$y'' = \frac{-2(x^2 - 3ax^2 - 3x + a)}{(x^2 + 1)^2}$$

より、変曲点のx座標は $x^2-3ax^2-3x+a=0$ ·····①

の突数解である。

逆に、①が異なる3つの実数解をもてば、そのxの各値の前後でy''の符号が変わるから、そのxの値は曲線の変曲点を与える。

ところで,

曲線 $\dot{y} = \frac{a-x}{x^1+1}$ と直線 y=mx+n の交

点の
$$x$$
座標は $\frac{a-x}{x^2+1}=mx+n$

 $\Leftrightarrow mx^i + nx^i + (m+1)x + n - a = 0$ …② の3つの解であるから、①、②が共通の3実数解をもてば、3つの変曲点は同一の直線 y = mx + n 上にあることになる。(1)、(2)の一致条件は

$$\frac{m}{1} = \frac{n}{-3a} = \frac{m+1}{-3} = \frac{n-a}{a}$$

これから

$$m = -\frac{1}{4}, \quad n = \frac{3}{4}a$$

よって、3つの変曲点は直線 x+4y-3a=0

の上にある。

談話室マロニエ 道具箱 (③3·微分+応用) 【**角子答** 】 25

③**3-発-10** $0 \le x \le 1$ で,不等式 $1-kx \le \frac{2}{1+e^x} \le 1-lx$ が,つねに成り立つようなkの最小値およびlの最大値を求めよ。

$$1-kx \le \frac{2}{1+e^x} \le 1-lx$$
 if $kx \ge 1-\frac{2}{1+e^x} \ge lx$

z=0 ではつねに成り立つから、z>0 のとき $k \ge \frac{1}{x} \left(1 - \frac{2}{e^z + 1}\right) \ge l$

······①

$$\exists z \subset x, \ \varrho(x) = \frac{1}{x} \left(1 - \frac{2}{e^x + 1} \right) \ \left(= \frac{e^x - 1}{x} \cdot \frac{1}{e^x + 1} \right) \ \ge x < \ge x$$

$$g'(x) = -\frac{1}{x^{2}} \left(1 - \frac{2}{e^{x} + 1}\right) + \frac{1}{x} \cdot \frac{2e^{x}}{(e^{x} + 1)^{2}} = \frac{1 + 2xe^{x} - e^{2x}}{x^{2}(e^{x} + 1)^{2}}$$

ここで、分子を h(x) とおくと、 $h(x)=1+2xe^x-e^{2x}$ より、

 $h'(x) = 2e^x(1+x-e^x)$ $\geq tx \delta \pi i$, x>0 $\forall ix 1+x< e^x \pi i \pi i \delta$.

h'(x) < 0 しかも h(0) = 0 だから x > 0 で h(x) < 0 となる。

よって $\varrho'(z)$ <0 (0<z \leq 1) だから、 $\varrho(z)$ は波少関数である。

ゆえに、g(x) の最小値は $g(1) = \frac{e-1}{e+1}$ で、また。

$$\lim_{x \to 0} g(x) = \lim_{x \to 0} \frac{e^x - 1}{x} \cdot \frac{1}{e^x + 1} = \frac{1}{2} \qquad \left(\Leftrightarrow \lim_{x \to 0} \frac{e^x - 1}{x} = 1 \right)$$

だから、 $0 < x \le 1$ で $\frac{1}{2} > g(x) \ge \frac{\epsilon - 1}{\epsilon + 1}$ が成り立つ。

よって、つわに①が成り立つには $k \ge \frac{1}{2}$ 、 $\frac{\epsilon-1}{\epsilon+1} \ge l$ が成り立つことである。

したがって、k の扱小値は $\frac{1}{2}$, l の最大値は $\frac{e-1}{e+1}$

……(答)

SoyPaste 数学Ⅲの微分法

SP3**3-1** (r4-2)

関数 $f(x) = 2^x - x \log 2$ について、次の問に答えよ.

- (1) f(x) の極値を求めよ.
- (2) 曲線 y = f(x) の x = 1 における接線の方程式を求めよ.
- (1) $f(x) = 2^x x \log 2 \$ \$\text{ } \text{ } \

$$f'(x) = 2^x \log 2 - \log 2$$

$$= (2^x - 1) \log 2$$

であるから, f(x) の増減は次のようになる.

x		0	
f'(x)	_	0	+
f(x)	>	1	7

したがって, f(x) は,

$$x=0$$
のとき、極小値1

をとる.

(2) (1) より,

$$f'(1) = \log 2$$

であり,

$$f(1) = 2 - \log 2$$

であるから、求める接線の方程式は、

$$y = (x - 1) \log 2 + 2 - \log 2$$
$$= x \log 2 + 2 - 2 \log 2.$$

く参考>

 $y=2^x$ とし、両辺の自然対数をとると、

$$\log_e y = x \log_e 2$$

であるから, 両辺を x で微分すると,

$$\frac{1}{y} \cdot \frac{dy}{dx} = \log 2.$$

これより.

$$\frac{dy}{dx} = y \log 2$$
$$= 2^x \log 2.$$

<参考終り>

SP33-2 (r33-2)

 \bigcirc

$$f(x) = x \log|x - 1| \, \xi \, \mathsf{d} \, \mathsf{d}.$$

- (1) $\lim_{x \to 1} f(x)$ を求めよ.
- (2) x > 1 において、導関数 f'(x) の極値を求めよ、
- (3) 関数 f(x) の増減、極値、曲線 y = f(x) の凹凸を調べてグラフをかけ、

(1)
$$\lim_{x \to 1} |x - 1| = +0$$
 であるから,

$$\lim_{x \to 1} f(x) = -\infty.$$

$$f'(x) = \log(x-1) + \frac{x}{x-1}$$

$$f''(x) = \frac{x-2}{(x-1)^2}.$$

これより, x > 1 における f'(x) の増減は次のようになる.

\boldsymbol{x}	(1)		2	
f''(x)		_	0	+
f'(x)		>	2	7

したがって、
$$f'(x)$$
 は、

$$x=2$$
のとき、極小値2

をとる.

(3)
$$x < 1$$
 のとき, $f(x) = x \log(1 - x)$ であるから,

$$f'(x) = \log(1-x) + \frac{x}{x-1}$$
,

$$f''(x) = \frac{x-2}{(x-1)^2}.$$

以上より、f(x) の増減は次のようになる.

\boldsymbol{x}		0		(1)		2	
f'(x)	+	0	_		+	+	+
f''(x)	_	-	_		-	0	+
f(x)	0	0	1		0	0	1

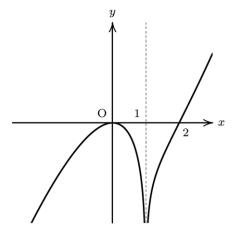
また,

$$\lim_{x\to -\infty} f(x) = -\infty, \quad \lim_{x\to \infty} f(x) = \infty.$$

さらに, f(x) は,

$$x=0$$
のとき、 極大値 0

をとる.



SP33-3 (j4-3)

曲線 $y=xe^{-x}$ の接線で点 $(1,\ a)$ を通るものがちょうど 2 本存在するような a の値をすべて求めよ。 ただし,必要ならば $\lim_{x\to\infty}\frac{x^2}{e^x}=0$ を用いてもよい。

$$y' = (1-x)e^{-x}$$

であるから、点 (t, te^{-t}) における接線の方程式は、

$$y = (1-t)e^{-t}(x-t) + te^{-t}$$
.

これが点(1, a)を通る条件は、

$$a = (1-t)^2 e^{-t} + t e^{-t},$$

すなわち,

$$a = (1 - t + t^2)e^{-t}$$

を満たす実数 t が存在することである.

ここで,

$$f(t) = (1 - t + t^2)e^{-t}$$

とすると,

$$f'(t) = -(t-1)(t-2)e^{-t}$$

であるから, f(t) の増減は次のようになる.

t		1		2	
f'(t)	_	0	+	0	_
f(t)	>	$\frac{1}{e}$	7	$\frac{3}{e^2}$	>

また,

$$\lim_{t\to -\infty} f(t) = \infty, \quad \lim_{t\to \infty} f(t) = 0.$$

以上より、求めるaの値は、

$$a = \frac{1}{e}, \quad \frac{3}{e^2}.$$

SP33-4 (j9-4)

区間 x > 0 における関数 $f(x) = e^{-x} \cos x$ の極大値を、大きい方から順に、

$$a_1, a_2, a_3, \cdots, a_n, \cdots$$

とするとき、無限級数 $\sum\limits_{n=1}^{\infty}a_n$ の和を求めよ.

f(x) の定め方より、自然数 n に対して、

$$f(x+2n\pi) = e^{-2n\pi}f(x)$$

であるから、 $0 < x \le 2\pi$ における f(x) の極大値を調べればよい.

$$f'(x) = -e^{-x}\cos x - e^{-x}\sin x$$

$$= \sqrt{2}e^{-x}\sin\left(x + \frac{5}{4}\pi\right)$$

であるから、 $0 < x \le 2\pi$ における f(x) の増減は次のようになる.

\boldsymbol{x}	(0)		$\frac{3}{4}\pi$		$\frac{7}{4}\pi$		2π
f'(x)		_	0	+	0	_	
f(x)		×		7		×	

これより、
$$\sum_{n=1}^{\infty} a_n$$
 は、

初項
$$a_1 = \frac{1}{\sqrt{2}}e^{-\frac{7}{4}\pi}$$
, 公比 $e^{-2\pi}$

の無限等比級数であるから、収束してその和は,

$$\frac{\frac{1}{\sqrt{2}}e^{-\frac{7}{4}\pi}}{1-e^{-2\pi}} = \frac{e^{\frac{\pi}{4}}}{\sqrt{2}(e^{2\pi}-1)}.$$

SP33-5 (j41-3)

2次の多項式 $P(x) = ax^2 + bx + c$ が、条件

$${xP(\log x)}' = (\log x)^2 \quad (x > 0)$$

を満たすような, 定数 a, b, c の値を求めよ.

$$P(x) = ax^2 + bx + c$$
 より、 $P'(x) = 2ax + b$ であり、
$$\{xP(\log x)\}' = P(\log x) + xP'(\log x) \cdot \frac{1}{x}$$
$$= P(\log x) + P'(\log x)$$

であるから,

$$\{xP(\log x)\}' = a(\log x)^2 + (2a+b)\log x + b + c$$
.
条件より、

$$\begin{cases} a = 1, \\ 2a + b = 0, \\ b + c = 0 \end{cases}$$

であるから,

$$a = 1$$
, $b = -2$, $c = 2$.

SP33-6 (j23-1) ※関数範囲入れ忘れ

関数
$$y = \frac{2^{3x} + 4^{x+1} + 2^{x+2}}{2^x + 2}$$
 の逆関数を求めよ.

関数の定め方より,

$$y = \frac{2^{x}(2^{2x} + 4 \cdot 2^{x} + 4)}{2^{x} + 2}$$

$$= \frac{2^{x}(2^{x} + 2)^{2}}{2^{x} + 2}$$

$$= 2^{x}(2^{x} + 2)$$

$$= (2^{x} + 1)^{2} - 1$$

であるから,

$$y+1=(2^x+1)^2$$
.

y > 0 のもとで、

$$\sqrt{y+1} = 2^x + 1$$

であるから,

$$x = \log_2(\sqrt{y+1} - 1).$$

xとyを入れ換えると、求める逆関数は、

$$y = \log_2(\sqrt{x+1} - 1)$$
 $(x > 0).$

SP33-7 (s33-2)

a を正の定数とする.不等式 $a^x \ge x$ が任意の正の実数 x に対して成り立つような a の値の範囲を求めよ.

 $a^x \ge x$ の両辺の対数をとると,

$$\log a^x \ge \log x$$

であるから, x > 0 より,

$$\frac{\log x}{x} \le \log a.$$

ここで,

$$f(x) = \frac{\log x}{x}$$

とすると、任意の正の実数 x に対して $a^x \ge x$ が成り立つのは、

$$(f(x)$$
の最大値) $\leq \log a$

が成り立つときである.

$$f'(x) = \frac{1 - \log x}{x^2}$$

であるから, x > 0 における f(x) の増減は次のようになる.

\boldsymbol{x}	(0)		e	
f'(x)		+	0	_
f(x)		7	$\frac{1}{e}$	>

したがって,

$$\frac{1}{e} \le \log a$$

であるから、求める a の値の範囲は、

$$a \ge e^{\frac{1}{e}}$$
.

談話室マロニエ 道具箱 (③3·微分+応用) 【**解答】 33**

SP(33-8(j38-5)

四角形 ABCD は半径1の円 O に内接し、AB = AD、CB = CD を満たしている。

(1) 線分 AC は円 O の直径であることを示せ、

辺 CB, CD の中点をそれぞれ M, N とする。四角形 ABCD を線分 AM, AN, MN に 沿って折り曲げて点 B、C、D を重ね、四面体 AMNC を作る。 $\mathrm{CM} = x \ (0 < x < 1)$ と する

- (2) 四面体 AMNC の体積 V を x を用いて表せ、
- (3) 四面体 AMNC に内接する球の表面積 S を x を用いて表し、0 < x < 1 における S の 最大値を求めよ.

(1) 四角形 ABCD は円 O に内接するから,

$$\angle ABC + \angle ADC = \pi$$
.

... (I)

また, 三角形 ABC, ADC において,

AB = AD, CB = CD, ACは共通

であるから、

 $\triangle ABC \equiv \triangle ADC$.

よって,

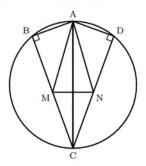
$$\angle ABC = \angle ADC$$
.

... ②

①、②より、

$$\angle ABC = \angle ADC = \frac{\pi}{2}$$
 ... ③

であるから、線分 AC は O の直径である.

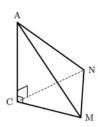


(2) 四面体 AMNC において、 ③より、

$$\angle ACM = \angle ACN = \frac{\pi}{2}$$

であるから,

AC ⊥ (平面 CMN).



また、(1) より、AC = 2 であるから、BM = CM = x より、三角形 ABM に三平方の定理を用いると,

$$AB = 2\sqrt{1 - x^2}.$$

また,四角形 ABCD において,線分 MN の中点を L とすると,

 \triangle CLM \triangle \triangle CBA

であり、相似比は,

CM : CA = x : 2

したがって.

$$\begin{split} \triangle \text{CLM} &= \frac{x^2}{4} \cdot \frac{1}{2} \cdot 2x \cdot 2\sqrt{1-x^2} \\ &= \frac{1}{2} x^3 \sqrt{1-x^2} \,. \end{split}$$

さらに.

$$\triangle CMN = 2\triangle CLM$$

であるから,

$$\begin{split} V &= \frac{1}{3} \cdot 2 \sqrt{1 - x^2} \cdot x^3 \sqrt{1 - x^2} \\ &= \frac{2}{3} x^3 (1 - x^2). \end{split}$$

(3) 四面体 AMNC の内接球の半径をr,表面積をTとすると,

$$S=4\pi r^2$$
, ... (4)

$$V = \frac{1}{r}T \cdot r$$
 ...

 $V = \frac{1}{3} T \cdot r,$ また, $T = (四角形 \, \mathrm{ABCD} \, \sigma \mathrm{m} \, \mathrm{t})$ であるから,

$$T = 2\sqrt{1 - x^2} \cdot 2x$$
$$= 4x\sqrt{1 - x^2}. \qquad \cdots \text{ }$$

⑤, ⑥と(2)の結果より、

$$\frac{2}{3}x^3(1-x^2) = \frac{4}{3}x\sqrt{1-x^2} \cdot r$$

であるから.

$$r = \frac{1}{2}x^2\sqrt{1-x^2}$$
.

④より,

$$S = \pi x^4 (1 - x^2)$$

であるから,

$$S' = 2\pi x^3 (2 - 3x^2).$$

これより、0 < x < 1 における S の増減は次のようになる。

\boldsymbol{x}	(0)		$\sqrt{\frac{2}{3}}$		(1)
S'		+	0	-	
S		7	$\frac{4}{27}\pi$	7	

したがって, S は $x = \frac{\sqrt{6}}{3}$ のとき, 最大となり, S の最大値は,

コメント

この問題をもっとシンプルな形にすると、次のようになります。

一辺の長さが a の正方形 ABCD の辺 BC, CD の中点をそれぞ れ M, N とし, 正方形 ABCD を線分 AM, AN, MN に沿って折 り曲げて点 B, C, D を重ね, 四面体 AMNC を作る.

このとき、四面体 AMNC に内接する球の半径を求めよ、

【解答】34 談話室マロニエ 道具箱(③3・微分+応用)

SP33-9 (s21-3)

点Oを中心とする半径1の円周上にAB=ACを満たす異なる3点A,B,Cがある.

AとOを通る直線が線分BCと交わる点をPとする.

- (1) P は線分 BC の中点であることを示せ、
- (2) $\angle BAC = \theta$ とするとき、三角形 ABC の面積 $S(\theta)$ を θ を用いて表せ、
- (3) 極限 $\lim_{\theta \to \pi 0} \frac{S(\theta)}{(\pi \theta)^3}$ を求めよ.
 - (1) OB = OC, AB = AC であるから,直線 OA は線分 BC の垂直二等 分線である.

したがって、直線 OA と線分 BC の交点 P は線分 BC の中点である.

(2) 三角形 ABC に正弦定理を用いると、
$$\frac{AB}{\sin\frac{\pi-\theta}{2}} = \frac{AC}{\sin\frac{\pi-\theta}{2}} = 2$$

であるから,

$$AB = AC = 2\cos\frac{\theta}{2}.$$

したがって,

$$S(\theta) = \frac{1}{2} \left(2\cos\frac{\theta}{2} \right)^2 \sin\theta$$

$$= 2\cos^2\frac{\theta}{2}\sin\theta.$$
 (3) $\pi - \theta = t$ とすると, $\theta \to \pi - 0$ のとき,

$$t \to +0$$

であり,

$$\sin \theta = \sin(\pi - t)$$

$$= \sin t,$$

$$\cos^2 \frac{\theta}{2} = \cos^2 \frac{\pi - t}{2}$$

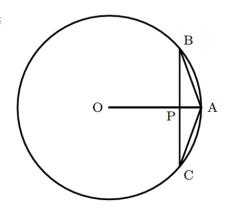
$$= \sin^2 \frac{t}{2}$$

であるから,

$$\lim_{\theta \to \pi - 0} \frac{S(\theta)}{(\pi - \theta)^3} = \lim_{t \to +0} \frac{2\sin^2 \frac{t}{2} \sin t}{t^3}$$

$$= \lim_{t \to +0} 2\left(\frac{\sin \frac{t}{2}}{\frac{t}{2}}\right)^2 \cdot \frac{1}{4} \cdot \frac{\sin t}{t}$$

$$= \frac{1}{2}.$$



談話室マロニエ 道具箱 (③3・微分+応用) 【解答】35

SP33-10 (s39-3)

tを定数として、xy 平面上の直線 $C_t: y = (x+t)e^t$ を考える。t が t>0 の範囲を変化 するとき、 C_t が通る範囲を求め、その概形を図示せよ。

1996 慶応義塾大学

$$f'(t) = (t+x+1)e^t$$

であるから、値 t = -x - 1 と区間 t > 0 との大小関係で場合分けをする.

(i) $-x-1 \leq 0$, $tabs, x \geq -1$ tabs = -1

$$f'(t) \ge 0$$

なので,

$$f(t) > f(0)$$
.

したがって,

$$y > x$$
.

(ii) -x-1>0, tabs, x<-1 $0 \ge 3$, t > 0 における f(t) の増減は次のようになる.

t	(0)		-x - 1	
f'(t)		-	0	+
f(t)		>		7

これより,

$$f(t) \ge f(-x-1)$$

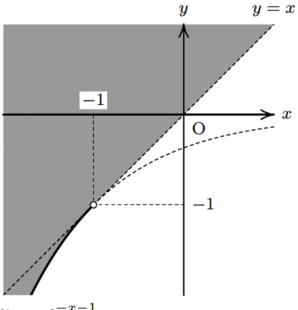
であるから,

$$y \geqq -e^{-x-1}.$$

(i), (ii) より, C_t が通過する範囲は次のようになる. $\begin{cases} x \ge -1 & \text{od} \end{cases} \quad y > x,$

$$\begin{cases} x \ge -1 \text{ obs}, & y > x, \\ x < -1 \text{ obs}, & y \ge -e^{-x-1}. \end{cases}$$

これを図示すると、次の図の網目部分である。 ただし、 曲線 $y=-e^{-x-1}$ (x < -1) 上の点は含む.



 $y = -e^{-x-1}$

【解答】36 談話室マロニエ 道具箱(③3・微分+応用)

SP33-11 (s1-3)

 $\lim_{n\to\infty} \frac{\log x}{n} = 0$ であること、また、e は自然対数の底で、e < 3 であることを用いてよい。

- (1) 自然数n に対して、方程式 $\frac{\log x}{x} = \frac{1}{3n}$ はx > 0 の範囲にちょうど2つの実数解を もつことを示せ、
- (2) (1) の 2 つの実数解を α_n , β_n ($\alpha_n < \beta_n$) とするとき,

$$1 < \alpha_n < e^{\frac{1}{n}}, \quad ne < \beta_n$$

が成り立つことを示せ、また、 $\lim \alpha_n$ を求めよ、

(1)
$$f(x) = \frac{\log x}{x} \ \text{ETSE},$$

$$f'(x) = \frac{1 - \log x}{x^2}$$

 $f'(x) = \frac{1-\log x}{x^2}$ であるから、x>0 における f(x) の増減は次のようになる.

\boldsymbol{x}	(0)		e	
f'(x)		+	0	_
f(x)		7		X

ここで、e < 3、 $n \ge 1$ であるから、

$$f(e) = \frac{1}{e} > \frac{1}{3n}$$
.

さらに.

$$\lim_{x \to +0} f(x) = -\infty,$$

$$\lim_{x \to \infty} f(x) = 0. \tag{}$$

したがって、曲線 y = f(x) は直線 $y = \frac{1}{3n}$ の x > 0 の部分と異な る2点で交わるので、示せた.

(2) (1) の
$$f(x)$$
 に対して、 $e < 3$ 、 $n \ge 1$ であるから、
$$f(1) - \frac{1}{3n} = -\frac{1}{3n} < 0, \qquad \cdots ②$$

$$f(e^{\frac{1}{n}}) - \frac{1}{3n} = \frac{3 - e^{\frac{1}{n}}}{3ne^{\frac{1}{n}}} > 0,$$
 ... 3

$$f(ne) - \frac{1}{3n} = \frac{\log n + 1}{ne} - \frac{1}{3n}$$

$$> \frac{\log n + 1}{3n} - \frac{1}{3n}$$

$$= \frac{\log n}{3n} \ge 0.$$
...

②, ③, ④より,

$$1 < \alpha_n < e^{\frac{1}{n}}, \quad ne < \beta_n$$

が成り立つ.

また, $n \to \infty$ のとき, $e^{\frac{1}{n}} \to 1$ であるから, はさみうちの原理より,

$$\lim_{n\to\infty}\alpha_n=1.$$

【解答】37 談話室マロニエ 道具箱(③3・微分+応用)

SP34-12 (s41-3)

次の間に答えよ

- (1) $x \ge 0$ のとき不等式 $1 x \le e^{-x}$ を示せ.
- (2) $n \land (n \ge 3)$ の選手の中からくじ引きで $2 \land 0$ 選手を選び、1回の試合を行う. このようにして試合をn回行うとき、同じ選手同士の試合が一度も起こらない確率は $\frac{1}{2}$ より小さいことを証明せよ。ただし,e は自然対数の底である。

2005 名古屋市立大学

(1)
$$f(x) = e^{-x} - (1-x)$$
 とすると, $x \ge 0$ において,

$$f'(x) = 1 - e^{-x} \ge 0$$

であるから、f(x) は単調に増加する.

 $\text{ is } f(0) = 0 \text{ obsans, } x \ge 0 \text{ is that } f(x) \ge 0.$

(2) n人の選手から2人の選手を選ぶ方法は、

$$_{n}C_{2}$$
通り.

次回の試合で同じ選手同士が試合をしない確率は、

$$1 - \frac{1}{nC_2}$$

$$\left(1 - \frac{1}{nC_2}\right) \left(1 - \frac{2}{nC_2}\right).$$

さらに、3回目の試合まで同じ選手が試合をしない確率は、
$$\left(1-\frac{1}{n\mathrm{C}_2}\right)\left(1-\frac{2}{n\mathrm{C}_2}\right).$$
 同様にすると、 n 回の試合で同じ選手同士が試合をしない確率 p_n は、
$$p_n = \left(1-\frac{1}{n\mathrm{C}_2}\right)\left(1-\frac{2}{n\mathrm{C}_2}\right)\cdots\left(1-\frac{n-1}{n\mathrm{C}_2}\right).$$
 ここで、(1) より、 $x>0$ のとき、

$$1 - x < e^{-x}$$

が成り立つから、
$$1 \le k \le n-1$$
 に対して、
$$0 < 1 - \frac{k}{nC_2} < e^{-\frac{k}{nC_2}}.$$

したがって.

$$p_n < e^{-\sum_{k=1}^{n-1} \frac{k}{n^{C_2}}}$$

さらに,

$$\sum_{k=1}^{n-1} \frac{k}{nC_2} = 1$$

であるから,

$$p_n < \frac{1}{e}$$
.